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A single-degree-of-freedom damped oscillator excited by dry friction forces of
unknown exact characteristics is considered. Asymptotic behaviour of the
oscillator has been studied by using the method of optimal Lyapunov
functions. Optimal estimates of the limit region have been obtained for various
bounding functions. Four illustrative examples of Lyapunov function
optimization and parameter modi®cation are given.
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1. INTRODUCTION

Dry friction phenomena play an important role in many mechanical systems [1].
It is well known that dry friction forces always have non-linear characteristics
and can cause very complex behaviour of a given system: e.g., non-linear excited
(stick±slip) oscillations [2, 3] or a chaotic motion and bifurcations [1, 4, 5].
Since mechanical systems with dry friction are non-linear in principle, the

analysis of properties of such systems is dif®cult. Even in the case of single-
degree-of-freedom systems usually approximate and/or numerical methods are
applied [4, 5]. Additional dif®culties follow from the fact that friction
characteristics in a given system usually are not known exactly and can vary in
time: e.g., due to thermal and/or stick effects [1]. Therefore, qualitative methods
of analysis of properties of mechanical systems with dry friction applicable when
information about friction characteristics is incomplete seem to be an
appropriate theoretical approach to such systems as an alternative to numerical
methods.
The second method of Lyapunov is widely used for the stability analysis of

smooth and non-smooth dynamical systems and systems with dry friction in
particular. Both smooth [7] and non-smooth [8] Lyapunov functions can be
applied.
In this paper the method of optimal quadratic Lyapunov functions [9±11] is

applied to the problem of asymptotic behaviour of a single-degree-of-freedom
damped oscillator excited by dry friction forces, namely the oscillator which can
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be described by the differential equation

�x1 � 2p _x1 � qx1 � f�t, � ÿ _x1�, �1�
where p> 0 is a damping coef®cient, q> 0 is the stiffness, f is a function
representing dry friction force and v= v(t) is a background speed function (here
the normalized case with the mass parameter m=1 is assumed). Many practical
systems can be described by equation (1): e.g., a pipe±soil underground system
exposed to an earthquake excitation [6].
Vibrations of system (1) excited by Coulomb friction forces and a harmonic

excitation v(t) have been analyzed: e.g., in reference [6]. However, in practice one
often has to deal with systems described by equation (1) when the friction force f
is not known exactly. At most some information on qualitative properties of the
friction force is available. Therefore, in this paper a more practical case is
considered in which a bounding function g= g(w) is known such that the
condition

j f�t, w�jRg�w� �2�
is satis®ed for every relative speed w � v�t� ÿ _x1 and te t0. Moreover, the case
of a general bounded excitation is considered: i.e., it is assumed that v(t) is any
function such that |v(t)|E v0 for a given v0> 0 and for every te t0. Then one
can treat the friction force as a disturbance of the linear part of system (1) and
estimate the stability region of the system without the exact information upon
friction characteristics.
The method of optimal Lyapunov functions [9±11] is applied to the stability

analysis.

2. STABILITY OF EXCITED OSCILLATIONS

In this section a general conception is described of the method of optimal
Lyapunov functions in application to linear systems under external excitations
[9]. Concentration here is on a class of linear non-autonomous systems of the
form

_x � Ax� Bz, �3�
where x2Rn is a state vector, A is a stable real n6 n matrix, B2Rn is a constant
vector and z is a scalar exciting signal which is assumed to be dependent both on
t and x: i.e., z= z(t, x), in general.
Since the matrix A is stable, there exists a positive de®nite matrix S such that

the stability index

g0�S� � ÿ sup
x 6�0

xTS A x

xTS x
�4�

is positive [9±11]. Then the quadratic form VS(x)= xTSx is a Lyapunov function
of the system _x � Ax which is exponentially stable with respect to the norm
k � kS�

�������������
VS�x�

p
.
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In order to study stability properties of equation (3) one estimates the stability
index [9, 10]

g�S, c� � ÿ sup
x, t

xTSAx

xTSx
� BTSx

xTSx
z�x, t�

� �
, �5�

where the supremum is over te t0 and x2 {y : kykS= c}. It is known [9, 10] that
the condition g(S, c)> 0 for a given c> 0 guarantees that every extern trajectory
of the system reaching the surface of the ellipsoid X(S, c)= {x : kxkS< c} enters
the ellipsoid. One says that system (3) is exponentially stable in X(S, c1) with a
limit region contained in X(S, c2) if index (5) is positive for every c2 (c2, c1) and
negative for c< c2.
In order to estimate index (5) without the exact knowledge of the perturbation

z one assumes that a stationary bound for z(x, t) is known: i.e., there is a
positive function g= g(x) such that

8
tet0
8
x
jz�x, t�jEg�x�: �6�

If one additionally assumes that g(x) is a polynomial function (i.e.,
g(x)= g0� g1(x)� g2(x)� � � �+ gk(x), where gi (x); i=1, . . . , k is a
homogeneous function of order i and g0 is a positive real), one obtains the
estimate

g�S, c�eÿ sup
xTSx�c2

xTSAx

xTSx
� jB

TSxj
xTSx

g�x�
� �

eg0�S, c�

� ÿ sup
xTSx�1,

xTSAx� jBTSxj h1�x� � ch2�x� � . . .� ckÿ1hk�x� � g0
c

� �h i
, �7�

where hi(x)= |gi(x)|, i=1, . . . , k.
It can be proved [10] that g0(S, c) given by expression (7) is a continuous

function of c for c> 0. Moreover, as one can easily ®nd out, g0(S, c)!ÿ1 as
c! 0. Similarly, if k> 1, then g0(S, c)!ÿ1 as c!+1. Thus one can hope
only that the index is positive in a certain range (c2, c1), if the perturbation z is
small enough.
To prove the above hypothesis one can make a further estimate

g0�S, c�eg0�S� ÿ e1 � c e2 � � � � � ckÿ1ek � g0
c
jjBjjS

� �
, �8�

where g0(S) is given by equation (4) and

ei � ei�S� � sup
xTS x�1

�jBTSxjjgi�x�j�, i � 1, . . . , k: �9�

Now, it is easy to see that g0(S, c) is positive in a certain range of c, if g0(S)> e1
and g0 is suf®ciently small.
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3. ASYMPTOTIC BEHAVIOUR OF THE OSCILLATOR WITH DRY FRICTION

One can now apply the method of Lyapunov functions described in the
previous section to the problem of asymptotic behaviour of the motion of
oscillator (1). First one can rewrite equation (1) into the matrix form (3) where
x � �x1;x2 � _x1�T and

A � 0 1
ÿq ÿ2p
� �

, B � 0
1

� �
, z�t, x� � f�t, ��t� ÿ BTx:� �10�

One can perform stability analysis separately for certain bounding functions
which seem to be important in practice and are convenient for theoretical
analysis, simultaneously. Namely, one can consider three cases; constant
bounding, linear increasing bounding and quadratic bounding functions.

3.1. CONSTANT BOUNDING

Suppose that the friction force modulus can be bounded by a constant
g(w)= g0= a> 0. Then stability index (5) for oscillator (1) can be estimated as

g�S, c� � ÿ sup
xTS x�1

xTSAx� a

c
jBTSx j

h i
rg0�S, c�

� ÿCTSAC

jjCjj2S
ÿ a

c
jjBjjS ÿ sup

x2h0, 1i

"
x2

BTSAB

jjBjj2S
ÿ CTSAC

jjCjj2S

 !

� jB
T�ATS� SA�Cj
jjBjjSjjCjjS

x
�������������
1ÿ x2

q #
� ÿ 1

2

BTSAB

jjBjj2S
� CTSAC

jjCjj2S

 !

ÿ a

c
jjBjjS ÿ

1

2

������������������������������������������������������������������������������������������
BTSAB

jjBjj2S
ÿ CTSAC

jjCjj2S

 !2

� jB
T�ATS� SA�Cj2
jjBjjSjjCjjS

vuut
� g0�S� ÿ

a

c
jjBjjS, �11�

where A, B are given by expression (10) and C 6� 0 is a vector S-orthogonal to B
i.e., such that BTSC=0. It is easy to derive from the stability condition
g0(S)> 0 the following estimate for the radius of the limit ellipsoid:

c2Rc0
2 �S� �

a

g0�S�
jjBjjS: �12�

3.2. LINEAR BOUNDING

Suppose that the friction force modulus can be bounded by a linear function
of the relative speed g(w)= a|w|+ b, where a, b are positive reals. Since the
bounding function g(w)= g(v(t)ÿ x2)= g(v(t)ÿBTx)E g(v0)+ a|BTx|, the
stability index (5) of oscillator (1) can be estimated as follows:
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g�S, c�eÿ sup
xTS x�1

�xTSAx� jBTSxj�ajBTxj � �av0 � b�=c�

eg0�S, c� � g1�S� ÿ
g1�v0�jjBjjS

c
� ÿCTSAC

jjCjj2S
ÿ �av0 � b�jjBjjS=c

ÿ sup
x2h0, 1i

"
x2

BTSAB

jjBjj2S
ÿ CTSAC

jjCjj2S
� aBTB

 !

� jBT�ATS� SA�C
jjBjjSjjCjjS

� ajjBjjS
jBTCj
jjCjjS

� �
x
�������������
1ÿ x2

q #

� ÿ 1

2

BTSAB

jjBjj2S
� CTSAC

jjCjj2S
� aBTB

 !
ÿ av0 � b

c
jjBjjS

ÿ 1

2

���������������������������������������������������������������������������������������������������������������������
BTSAB

jjBjj2S
ÿ CTSAC

jjCjj2S
� aBTB

 !2

�
 
jBT�ATS� SA�Cj
jjBjjSjjCjjS

� ajjBjjS
jBTCj
jjCjjS

!2

vuuuuuuuut �13�

As in the previous case, it is very easy to derive from the stability condition
g0(S)> 0 the following estimate for the radius of the limit ellipsoid:

c2Ec0
2 �S, v0� �

�av0 � b�
g1�S, a�

jjBjjS: �14�

This is applicable if g1(S, a)> 0.

3.3. QUADRATIC BOUNDING

Suppose that the friction force modulus can be bounded by a quadratic
function of the relative speed g(w)= aw2+ b|w|+ d, where a, d are positive reals
and be 0. Then, since g(w)= g(v(t)ÿBTx)E g(v0) + (2av0+ b) |BTx|+ a(BTx)2,
the stability index (5) of oscillator (1) can be estimated as follows

g�S, c�eÿ sup
xTSx�1

"
xTSAx� �2av0 � b�jBTS xjjBTxj

� acjBTSxj�BTx�2 � �av
2
0 � bv0 � d�

c
jBTSxj

#
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eÿ CTSAC

jjCjj2S
ÿ acjjBjjS sup

x2h0, 1i
x

BTB

jjBjjS
x� BTC

jjCjjS

�������������
1ÿ x2

q� �2
" #

ÿ g�v0�
c
jjBjjS ÿ sup

x2h0, 1i

"
x2

BTSAB

jjBjj2S
ÿ CTSAC

jjCjj2S
� �2av0 � b�BTB

 !

� jBT�ATS� SA�Cj
jjBjjSjjCjjS

� �2av0 � b�jjBjjS
jBTCj
jjCjjS

� �
x
�������������
1ÿ x2

q #

eg0�S, c� � ÿ 1

2

BTSAB

jjBjj2S
� CTSAC

jjCjj2S
� �2av0 � b�BTB

" #

ÿ 1

2

"
BTSAB

jjBjj2S
ÿ CTSAC

jjCjj2S
� �2av0 � b�BTB

 !2

�
 
jBT�ATS� SA�Cj
jjBjjSjjCjjS

� �2av0 � b�jjBjjS
jBTCj
jjCjjS

!2#1=2

ÿ acjjBjjS
BTB

jjBjjS

� �2

� BTC

jjCjjS

� �2
" #1=2

ÿ �av
2
0 � bv0 � d�

c
jjBjjS � g2�S, 2av0 � b� ÿ acd2 ÿ g�v0�jjBjjS

c
:

The stability condition g0(S)> 0 leads in this case to a quadratic inequality
which has solutions if and only if the following condition of stability is satis®ed:

g22�S, 2av0 � b�e4ad2�S� g�v0�jjBjjS: �16�
Then one obtains the critical values, c1> c2,

c1, 2 �
g2�S�2

�����������������������������������������������������
g22�S� ÿ 4ad2�S�g�v0�jjBjjS

q
2ad2�S� �17�

such that the approximate index g0(S, c) is positive for every c2 (c2, c1). Thus,
estimate (15) ensures that every trajectory of the system, starting from the
ellipsoid X(S, c1), converge exponentially to the limit ellipsoid X(S, c2).

4. LYAPUNOV FUNCTION OPTIMIZATION AND PARAMETERS
MODIFICATION

In the previous section useful estimates were obtained of the stability index
and the limit ellipsoid of oscillator (1) with various assumed boundings for dry
friction characteristics. One can now show how optimal estimates of the limit
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region of the system can be obtained and how to choose system parameters in
order to achieve optimal stability properties.
It is assumed that one has an estimate g0(S, c) of the stability index of system

(1) and the corresponding estimate c0
2 ec2 of the radius of the limit ellipsoid

derived from the stability condition g0(S, c)> 0. It is clear that the radius c0
2

depends, in general, on the choice of Lyapunov function as well as on certain
parameters p of the system: i.e., c0

2 � c0
2 �S,p�.

If system parameters are ®xed (i.e., p= p0=const.), then one usually wants to
®nd an optimal estimate of the limit region of the system. To do that one has to
determine a quality function Q=Q(S, p0) (e.g., a measure of the ellipsoid
X�S, c0

2 �S, p0�� and perform an optimization with respect to S belonging to a
class of positive de®nite matrices n6 n. In the result one obtains an optimal
Lyapunov function xTŜx and the corresponding optimal estimate
X̂2 � X�Ŝ, c2�Ŝ, p0� of the limit region.
In order to provide illustrative examples one can consider system (1) with

p2 (0, 1) and q=1, and apply a one-parameter class of Lyapunov functions

VS�x� � xTS�s�x � xT
2s2 ÿ 2ps� 1, s

s; 1

� �
x, s 2 R, �18�

which proves to be especially convenient in calculations [9, 10]. It is easy to see
that S(s) is positive de®nite for all s2R and p2 (0, 1). Thus, one can perform
Lyapunov function optimization with respect to the parameter s2R.
Example 1. Perform Lyapunov function optimization in the class of positive

de®nite quadratic forms (18) for system (1) with constant bounding function
g(w)= a> 0. Assume the radius c2(S) as the minimized quality function.
Solution. Applying equation (18) to estimates (11) one obtains the following

estimate of the stability index [5]:

g0�S, c� �
2pÿ sÿ a

c
, if sep or s < p and cE a

4�pÿ s�

sÿ a2

8c2�pÿ s� , if c < p and c >
a

4�pÿ s�

8>><>>:
9>>=>>; �19�

An estimate of the radius c2 of the limit ellipsoid X(S, c2) can be easily derived
from formula (19). For example, taking s= p one obtains c2= c2(S)= a/p. One
can also perform Lyapunov function optimization with respect to the parameter
s2R under a suitable quality index. It is easy to deduce from equation (19) that
the minimal radius c2 is achieved for s � ŝ � 2p=3 and ĉ2 � c2�S�ŝ�, p� � 3a=4p.
Thus, all trajectories of the system converge exponentially to the ellipsoid
{�x1, x2� 2 R2 : �1ÿ 8p2=9�x21 � 4px1x2=3� x22E9a2=16p2}.
It is clear that the ellipsoid obtained can be a conservative estimate of the limit

region of system trajectories in certain special cases (e.g., for high frequency
harmonic excitation). However, if one wants to estimate safe stability bounds in
the case of uncertain information on friction forces and excitations, then one
should consider the most disadvantageous scenario of the background excitation.
It is usually assumed that the dry friction force is opposite to speed _x1 (i.e.,
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f=ÿa sign� _x1� for the Coulomb model). In this case, however, one can imagine
a background motion controlled in such a way that the friction force is always in
agreement with the speed direction: i.e., f � a sign� _x1�. Then the work done by
friction forces is continuously pumped into the system. Therefore, one can
expect, in such a case, the maximal limit region of system trajectories. More
precisely, a limit cycle can be expected as the result of frictional pumping and
viscous damping in the system. It is illustrated in Figure 1 for the case of
oscillator (1) with p=0�5, q=1, a=0�8.
It is signi®cant that external trajectories enter the limit ellipsoid and converge

to the limit cycle although they are not exponentially stable inside the ellipsoid.
Example 2. Find the minimal radius of the limit ellipsoid for system (1) with

linear bounding function g(w)= a|w|+ b and parameters a= p=0�5. perform
Lyapunov function optimization in the class of functions de®ned by equation
(18).
Solution. Applying expression (18) to formula (14), one obtains the following

formula for the approximate index:

g0�S, c� � pÿ a

2
ÿ 1

2

������������������������������������������������������������
�2s� aÿ 2p�2 � a2s2

s2 ÿ 2psÿ 1

s
ÿ av0 � b

c
: �20�

–2.0 –1.0 1.0 2.0 X1

X1=X2

0.0

–0.5

0.5

1.5

–1.5

Figure 1. Phase portrait of oscillator (1) with p=0�5 and q=1 excited by a Coulomb friction
force of amplitude a=0�8 (the dotted ellipsoid 7x21 � 6x1x2 � 9x22 � 12�96 represents the bounds
of the optimal Lyapunov estimate of the limit region).
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This is applicable for s2 (0, 2p). Hence, one has the following estimate for the
radius of the limit ellipsoid:

c0
2 �

av0 � b

pÿ a

2
ÿ 1

2
�2sÿ 2p� a�2 � a2s2

s2 ÿ 2ps� 1

� �1=2 : �21�

It is easy to see that the minimal value of the radius c0
2 � 2�306 � �0�5v0 � b� is

achieved for s � ŝ � 0�2311.
Example 3. Find an estimate of the maximal upper bound v0 for the speed v

which ensures exponential convergence of all trajectories of the system to the
limit ellipsoid {�x1, x2� 2 R2 : x21 � 1�6x1x2 � x22E1=4}. Perform calculations for
a=0�5, b=0, c=0�5, d=0�1, p= s=0�8 and for the Lyapunov function S(s)
belonging to class (18).
Solution. Applying expression (18) to estimates (15) one obtains the following

formula for the approximate stability index:

g0�S, c� � pÿ av0 ÿ b

2
ÿ av20 � bv0 � d

c
ÿ ac

2s2 ÿ 2sp� 1

s2 ÿ 2sp� 1

� �1=2

ÿ 1

2

����������������������������������������������������������������������������
�2sÿ 2p� 2av0 � b�2 � �2av0 � b�2s2

s2 ÿ 2ps� 1

s
�22�

Putting the assumed values of parameters into equation (22) one obtains
g0(S, c)= (11/60)ÿ (8/6) v0 ÿ v20. Hence, one ®nally concludes that exponential
stability of the system to the assumed limit ellipsoid is ensured for
v0< v*� 0�1256.
If a mechanical system is at the design stage and some system parameters p

are not ®xed one usually wants to choose them in an optimal way in order to
achieve the best stability properties of the system. In such a case one can
perform a two-stage optimization. At the ®rst stage one performs a Lyapunov
function optimization (e.g., the minimization of a quality function Q(S, p) with
respect to S) for any parameters p. In the result one obtains an optimal matrix
Ŝ, usually dependent on the parameters: i.e., Ŝ � Ŝ�p�.
Then, at the second stage, one can perform further parameter optimization

(e.g., the minimization of the quality function Q�Ŝ�p�, p� with respect to p
belonging to a set of admissible values of parameters). In the result one obtains
an optimal vector of parameters p̂ for which the quality function achieves its
minimum: i.e., system (1) with optimal parameters p̂ achieves the limit region of
the minimal measure.
Example 4. Find an optimal damping parameter p for oscillator (1) with

constant bounding on dry friction forces such that the system achieves a limit
ellipsoid of a minimal area.
Solution. One has just performed Lyapunov function optimization for the

system (see example 1) in class (18) of Lyapunov functions. In the result one has
obtained the optimal parameter ŝ � 2p=3 and the corresponding optimal radius
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ĉ2 � 3a=4p. Now one can perform further optimization: namely, one can
minimize the area of the limit ellipsoid X�S�ŝ�, ĉ�2. It is easy to see that the area
is equal to

P � 27pa2

16p2
���������������
9ÿ 8p2

p : �23�

Hence, the optimal damping p̂ � ���
3
p

=2 � 0�866 and the minimal area is
PMIN=3

���
3
p

pa2=4.

5. CONCLUSIONS

The Lyapunov approach presented has proved to be an effective method for
the analysis of qualitative properties of vibrating systems of one degree of
freedom with dry friction. Lyapunov function optimization enables one to
obtain optimal estimates of safe stability limits without exact information on
friction characteristics and background excitation. This is essential in many
practical problems when the exact system identi®cation is not possible.
By using the described method it is also possible to perform an optimal

parametric modi®cation with respect to stability properties of a given system. it
can be utilized in the designing of optimal mechanical systems excited by dry
friction forces.
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